16 research outputs found

    Some Results on Colored Network Contraction

    Get PDF
    Networks are pervasive in computer science and in real world applications. It is often useful to leverage distinctive node features to regroup such data in clusters, by making use of a single representative node per cluster. Such contracted graphs can help identify features of the original networks that were not visible before. As an example, we can identify contiguous nodes having the same discrete property in a social network. Contracting a graph allows a more scalable analysis of the interactions and structure of the network nodes. This paper delves into the problem of contracting possibly large colored networks into smaller and more easily manageable representatives. It also describes a simple but effective algorithm to perform this task. Extended performance plots are given for a range of graphs and results are detailed and discussed with the aim of providing useful use cases and application scenarios for the approach

    RSSi-Based Visitor Tracking in Museums via Cascaded AI Classifiers and Coloured Graph Representations

    Get PDF
    Individual tracking of museum visitors based on portable radio beacons, an asset for behavioural analyses and comfort/performance improvements, is seeing increasing diffusion. Conceptually, this approach enables room-level localisation based on a network of small antennas (thus, without invasive modification of the existent structures). The antennas measure the intensity (RSSi) of self-advertising signals broadcasted by beacons individually assigned to the visitors. The signal intensity provides a proxy for the distance to the antennas and thus indicative positioning. However, RSSi signals are well-known to be noisy, even in ideal conditions (high antenna density, absence of obstacles, absence of crowd, ...). In this contribution, we present a method to perform accurate RSSi-based visitor tracking when the density of antennas is relatively low, e.g. due to technical constraints imposed by historic buildings. We combine an ensemble of "simple" localisers, trained based on ground-truth, with an encoding of the museum topology in terms of a total-coloured graph. This turns the localisation problem into a cascade process, from large to small scales, in space and in time. Our use case is visitors tracking in Galleria Borghese, Rome (Italy), for which our method manages >96% localisation accuracy, significantly improving on our previous work (J. Comput. Sci. 101357, 2021)

    Finite Boolean Algebras for Solid Geometry using Julia's Sparse Arrays

    Full text link
    The goal of this paper is to introduce a new method in computer-aided geometry of solid modeling. We put forth a novel algebraic technique to evaluate any variadic expression between polyhedral d-solids (d = 2, 3) with regularized operators of union, intersection, and difference, i.e., any CSG tree. The result is obtained in three steps: first, by computing an independent set of generators for the d-space partition induced by the input; then, by reducing the solid expression to an equivalent logical formula between Boolean terms made by zeros and ones; and, finally, by evaluating this expression using bitwise operators. This method is implemented in Julia using sparse arrays. The computational evaluation of every possible solid expression, usually denoted as CSG (Constructive Solid Geometry), is reduced to an equivalent logical expression of a finite set algebra over the cells of a space partition, and solved by native bitwise operators.Comment: revised version submitted to Computer-Aided Geometric Desig

    Measurement and analysis of visitors' trajectories in crowded museums

    Full text link
    We tackle the issue of measuring and analyzing the visitors' dynamics in crowded museums. We propose an IoT-based system -- supported by artificial intelligence models -- to reconstruct the visitors' trajectories throughout the museum spaces. Thanks to this tool, we are able to gather wide ensembles of visitors' trajectories, allowing useful insights for the facility management and the preservation of the art pieces. Our contribution comes with one successful use case: the Galleria Borghese in Rome, Italy.Comment: 6 pages, 11 figures, International Conference on Metrology for Archaeology and Cultural Heritag

    Local congruence of chain complexes

    Full text link
    The object of this paper is to transform a set of local chain complexes to a single global complex using an equivalence relation of congruence of cells, solving topologically the numerical inaccuracies of floating-point arithmetics. While computing the space arrangement generated by a collection of cellular complexes, one may start from independently and efficiently computing the intersection of each single input 2-cell with the others. The topology of these intersections is codified within a set of (0-2)-dimensional chain complexes. The target of this paper is to merge the local chains by using the equivalence relations of {\epsilon}-congruence between 0-, 1-, and 2-cells (elementary chains). In particular, we reduce the block-diagonal coboundary matrices [\Delta_0] and [\Delta_1], used as matrix accumulators of the local coboundary chains, to the global matrices [\delta_0] and [\delta_1], representative of congruence topology, i.e., of congruence quotients between all 0-,1-,2-cells, via elementary algebraic operations on their columns. This algorithm is codified using the Julia porting of the SuiteSparse:GraphBLAS implementation of the GraphBLAS standard, conceived to efficiently compute algorithms on large graphs using linear algebra and sparse matrices [1, 2].Comment: to submi

    Managing Crowded Museums: Visitors Flow Measurement, Analysis, Modeling, and Optimization

    Get PDF
    We present an all-around study of the visitors flow in crowded museums: a combination of Lagrangian field measurements and statistical analyses enable us to create stochastic digital-twins of the guests dynamics, unlocking comfort- and safety-driven optimizations. Our case study is the Galleria Borghese museum in Rome (Italy), in which we performed a real-life data acquisition campaign. We specifically employ a Lagrangian IoT-based visitor tracking system based on Raspberry Pi receivers, displaced in fixed positions throughout the museum rooms, and on portable Bluetooth Low Energy beacons handed over to the visitors. Thanks to two algorithms: a sliding window-based statistical analysis and an MLP neural network, we filter the beacons RSSI and accurately reconstruct visitor trajectories at room-scale. Via a clustering analysis, hinged on an original Wasserstein-like trajectory-space metric, we analyze the visitor paths to get behavioral insights, including the most common flow patterns. On these bases, we build the transition matrix describing, in probability, the room-scale visitor flows. Such a matrix is the cornerstone of a stochastic model capable of generating visitor trajectories in silico. We conclude by employing the simulator to increase the number of daily visitors while respecting numerous logistic and safety constraints. This is possible thanks to optimized ticketing and new entrance/exit management

    Ten years of cube attacks

    Get PDF
    In 2009, Dinur and Shamir proposed the cube attack, an algebraic cryptanalysis technique that only requires black box access to a target cipher. Since then, this attack has received both many criticisms and endorsements from crypto community; this work aims at revising and collecting the many attacks that have been proposed starting from it. We categorise all of these attacks in five classes; for each class, we provide a brief summary description along with the state-of-the-art references and the most recent cryptanalysis results. Furthermore, we extend and refine the new notation we proposed in 2021 and we use it to provide a consistent definition for each attack family. Finally, in the appendix, we provide an in-depth description of the kite attack framework, a cipher independent tool we firstly proposed in 2018 that implements the kite attack on GPUs. To prove its effectiveness, we use Mickey2.0 as a use case, showing how to embed it in the framework

    Novel Notation on Cube Attack

    No full text
    corecore